Главная >> Физика 9 класс

 

Глава 1. Законы взаимодействия и движения тел

 

§ 15. Закон всемирного тяготения

В курсе физики 7 класса вы изучали явление всемирного тяготения. Оно заключается в том, что между всеми телами во Вселенной действуют силы притяжения.

К выводу о существовании сил всемирного тяготения (их называют также гравитационными) пришёл Ньютон в результате изучения движения Луны вокруг Земли и планет вокруг Солнца.

Заслуга Ньютона заключается не только в его гениальной догадке о взаимном притяжении тел, но и в том, что он сумел найти закон их взаимодействия, т. е. формулу для расчёта гравитационной силы между двумя телами.

Закон всемирного тяготения гласит:

  • два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними.

Закон всемирного тяготения

Условия, определяющие границы применимости закона всемирного тяготения

где F — модуль вектора силы гравитационного притяжения между телами массами m1 и m2, r — расстояние между телами (их центрами); G — коэффициент, который называется гравитационной постоянной.

Если m1 = m2 = 1 кг и r = 1 м, то, как видно из формулы, гравитационная постоянная G численно равна силе F. Другими словами, гравитационная постоянная численно равна силе F притяжения двух тел массой по 1 кг, находящихся на расстоянии 1 м друг от друга. Измерения показывают, что

G = 6,67 • 10-11 Н • м2/кг2.

Взаимодействие яблока и Земли

Формула даёт точный результат при расчёте силы всемирного тяготения в трёх случаях: 1)если размеры тел пренебрежимо малы по сравнению с расстоянием между ними (рис. 32, а); 2) если оба тела однородны и имеют шарообразную форму (рис. 32, б)\ 3) если одно из взаимодействующих тел — шар, размеры и масса которого значительно больше, чем у второго тела (любой формы), находящегося на поверхности этого шара или вблизи неё (рис. 32, в).

Третий из рассмотренных случаев является основанием для того, чтобы рассчитывать по приведённой формуле силу притяжения к Земле любого из находящихся на ней тел. При этом в качестве расстояния между телами следует брать радиус Земли, поскольку размеры всех тел, находящихся на её поверхности или вблизи неё, пренебрежимо малы по сравнению с земным радиусом.

Окончание >>>