Главная >> Физика 10 кл. Мякишев

 

Глава 9. Молекулярно-кинетическая теория идеального газа

 

§ 57. Основное уравнение молекулярно-кинетической теории газов

    Вспомните, что такое физическая модель.

    Приведите примеры физических моделей.

    Можно ли определить скорость одной молекулы?

Идеальный газ

У газа при обычных давлениях расстояние между молекулами во много раз превышает их размеры. В этом случае силы взаимодействия молекул пренебрежимо малы и кинетическая энергия молекул много больше потенциальной энергии взаимодействия. Молекулы газа можно рассматривать как материальные точки или очень маленькие твёрдые шарики. Вместо реального газа, между молекулами которого действуют силы взаимодействия, мы будем рассматривать его модель — идеальный газ.

Запомни
Идеальный газ — это теоретическая модель газа, в которой не учитываются размеры молекул (они считаются материальными точками) и их взаимодействие между собой (за исключением случаев непосредственного столкновения).

Естественно, при столкновении молекул идеального газа на них действует сила отталкивания. Так как молекулы газа мы можем согласно модели считать материальными точками, то размерами молекул мы пренебрегаем, считая, что объём, который они занимают, гораздо меньше объёма сосуда.

Важно
Напомним, что в физической модели принимают во внимание лишь те свойства реальной системы, учёт которых совершенно необходим для объяснения исследуемых закономерностей поведения этой системы.

Ни одна модель не может передать все свойства системы. Сейчас нам предстоит решить задачу: вычислить с помощью молекулярно-кинетической теории давление идеального газа на стенки сосуда. Для этой задачи модель идеального газа оказывается вполне удовлетворительной. Она приводит к результатам, которые подтверждаются опытом.

Давление газа в молекулярно-кинетической теории

Пусть газ находится в закрытом сосуде. Манометр показывает давление газа р0. Как возникает это давление?

Каждая молекула газа, ударяясь о стенку, в течение малого промежутка времени действует на неё с некоторой силой

Каждая молекула газа, ударяясь о стенку, в течение малого промежутка времени действует на неё с некоторой силой. В результате беспорядочных ударов о стенку давление быстро меняется со временем примерно так, как показано на рисунке 9.1. Однако действия, вызванные ударами отдельных молекул, настолько слабы, что манометром они не регистрируются. Манометр фиксирует среднюю по времени силу, действующую на каждую единицу площади поверхности его чувствительного элемента — мембраны. Несмотря на небольшие изменения давления, среднее значение давления р0 практически оказывается вполне определённой величиной, так как ударов о стенку очень много, а массы молекул очень малы.

Среднее давление имеет определённое значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от этого среднего значения. Чем меньше площадь поверхности тела, тем заметнее относительные изменения силы давления, действующей на данную площадь. Так, например, если участок поверхности тела имеет размер порядка нескольких диаметров молекулы, то действующая на неё сила давления меняется скачкообразно от нуля до некоторого значения при попадании молекулы на этот участок.

Среднее значение квадрата скорости молекул. Для вычисления среднего давления надо знать значение средней скорости молекул (точнее, среднее значение квадрата скорости). Это не простой вопрос. Вы привыкли к тому, что скорость имеет каждая частица. Средняя же скорость молекул зависит от того, каковы скорости движения всех молекул.

Чем отличается определение средней скорости тела в механике от определения средней скорости молекул газа?

С самого начала нужно отказаться от попыток проследить за движением всех молекул, из которых состоит газ. Их слишком много, и движутся они очень сложно. Нам и не нужно знать, как движется каждая молекула. Мы должны выяснить, к какому результату приводит движение всех молекул газа.

Характер движения всей совокупности молекул газа известен из опыта. Молекулы участвуют в беспорядочном (тепловом) движении. Это означает, что скорость любой молекулы может оказаться как очень большой, так и очень малой. Направление движения молекул беспрестанно меняется при их столкновениях друг с другом.

Скорости отдельных молекул могут быть любыми, однако среднее значение модуля этих скоростей вполне определённое.

В дальнейшем нам понадобится среднее значение не самой скорости, а квадрата скорости — средняя квадратичная скорость. От этой величины зависит средняя кинетическая энергия молекул. А средняя кинетическая энергия молекул, как мы вскоре убедимся, имеет очень большое значение во всей молекулярно-кинетической теории. Обозначим модули скоростей отдельных молекул газа через υ1, υ2, υ3, ... , υN. Среднее значение квадрата скорости определяется следующей формулой:

Среднее значение квадрата скорости

где N — число молекул в газе.

Но квадрат модуля любого вектора равен сумме квадратов его проекций на оси координат OX, OY, OZ.

Из курса механики известно, что при движении на плоскости υ2 = υ2x + υ2y. В случае, когда тело движется в пространстве, квадрат скорости равен:

υ2 = υ2x + υ2y + υ2z.                     (9.2)

Продолжение >>>