Главная >> Физика 10 кл. Мякишев

 

Глава 1. Кинематика точки и твёрдого тела

 

§ 13. Движение с постоянным ускорением свободного падения

    Что называют свободным падением?

    От чего свободно падающее тело?

При изучении свободного падения тел мы будем рассматривать только такие движения, при которых ускорение свободного падения постоянно, т. е. сопротивление воздуха можно не учитывать.

Эти движения будут описываться известными нам кинематическими уравнениями (1.12) и (1.14).

Найдём траекторию тела, брошенного под углом к горизонту

С движением тел, получивших начальную скорость под углом к ускорению свободного падения или под углом к горизонту, приходится встречаться довольно часто. Например: снаряд, выпущенный под углом к горизонту; ядро, которое толкнул спортсмен.

Найдём траекторию тела, брошенного под углом к горизонту. Пусть из точки О брошено тело с начальной скоростью 0 под углом а к горизонту (рис. 1.51). Выберем оси координат так, чтобы векторы и были расположены в какой-либо координатной плоскости, например в плоскости XOY. Ось ОХ направим горизонтально, а ось OY — вертикально вверх. Начало координат выберем в точке бросания.

Так как ускорение свободного падения с течением времени не меняется, то движение тела в данном случае, как и любое движение с постоянным ускорением, можно описать уравнениями

ускорение свободного падения

Так как в начальный момент времени тело находилось в начале координат, то x0 = 0 и у0 = 0. Проекцию вектора на какую-либо ось можно выразить через модуль вектора и косинус или синус угла, который этот вектор образует с положительным направлением оси. Из рисунка 1.51 видно, что υ0x = υ0cosα, υ0y = υ0sinα, ax = 0 и ay = -g. Поэтому уравнения (1.18) и (1.19) можно записать в виде

Для построения траектории точки можно найти из уравнений (1.20) и (1.21) значения координат х и у для различных моментов времени, а затем по координатам построить точки и соединить их плавной линией.

Приведите ещё примеры ситуаций, в которых тело начинает падать с начальной скоростью, направленной под углом к горизонту.

Продолжение >>>